Lighting Evaluation in the Office Environment

M. Gariba (1) and R. Facci (2)
1 Pontifical Catholic University of Paraná - PUCPR / Brazil
2 Health at Work International Institute – INSAT / Brazil

INDOOR LIGHTING

• most diffused "adverse agent" in the work environment
• exposed subjects progressively increasing due to shift from "manual work" towards "conceptual work" (blue collar towards white collar)
• lighting conditions (natural and artificial) are believed to play an essential role in causing "occupational asthenopia"

PHOTOMETRY & PHYSIOLOGY

Environmental light that effectively reaches the operator’s retina is limited by:

- the shielding action of the osteo-cutaneous orbitary protuberances, eyelashes and eyebrows
- the selective action of the pupil
- the position of the head (strongly influenced by the task)

Only light that reaches the retina can produce discomfort and disturbances

THE OCCUPATIONAL VISUAL FIELD

It is defined as the zone in which the worker, because of task constraints, must direct his/her gaze for extended periods of time

It roughly approximates a cone with its vertex at the midpoint of the worker's eyes (nasion) and with an irregular base

PHOTOMETRY AT THE WORKPLACE

• illuminance appears to be inadequate to quantify the amount of light that actually reaches the operator's eyes
• luminance is more appropriate for "occupational photometry" purposes
<table>
<thead>
<tr>
<th>Workstation</th>
<th>Floor</th>
<th>Room no.</th>
<th>Photo no.</th>
<th>Luminance ratio</th>
<th>Occupational Visual Field Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>30</td>
<td>3</td>
<td>High</td>
<td>Left (min - max) = 30/9000 cd/m²</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>64</td>
<td>16</td>
<td>Slightly high</td>
<td>Right (min - max) = 15/4200 cd/m²</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>26-32</td>
<td>29</td>
<td>Slightly high</td>
<td>Central-left (min - max) = 5/2500 cd/m²</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>06-08</td>
<td>33</td>
<td>Adequate</td>
<td>Central-left (min - max) = 5/2500 cd/m²</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>80</td>
<td>36</td>
<td>Slightly high</td>
<td>Central (min - max) = 10/2400 cd/m²</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>41-51</td>
<td>43</td>
<td>Slightly high</td>
<td>Central-right (min - max) = 15/4000 cd/m²</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>24-36</td>
<td>52</td>
<td>Slightly high</td>
<td>Central-right (min - max) = 10/2100 cd/m²</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>07-01</td>
<td>43</td>
<td>Slightly high</td>
<td>Central (min - max) = 10/2000 cd/m²</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>24-36</td>
<td>52</td>
<td>Adequate</td>
<td>Central-left (min - max) = 10/2400 cd/m²</td>
</tr>
<tr>
<td>10</td>
<td>17</td>
<td>24-36</td>
<td>52</td>
<td>Adequate</td>
<td>Central-right (min - max) = 10/2100 cd/m²</td>
</tr>
</tbody>
</table>

Diagrams

Diagram 1:
- 9000 cd/m²
- 950 cd/m²
- 100 cd/m²
- 30 cd/m²
- 220 lux
- 800 lux

Diagram 2:
- 1200 cd/m²
- 1200 lux

Diagram 3:
- 70 lux
- 150 cd/m²
- 7 cd/m²
- 770 lux
CONCLUSIONS

Luminance is more appropriate for occupational photometry purposes (lighting risk assessment).

Our results show that, whithin the Occupational Visual Field illuminance is not changing intensively, while luminances are varying of hundreds of times.