Immunotoxicology of Asbestos: Asbestos enhances regulatory T cell function

Maeda M1,2, Otsuki T1, Kumagai N1, Matsuzaki H1, Lee S1, Hayashi H1,3, Nishimura N1

1Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan, 2Department of Biofunctional Chemistry, Division of Bioscience, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan, 3Department of dermatology, Kawasaki Medical School, Kurashiki, Japan

Immunological Effects of Asbestos and Silica

Asbestos (Silicate) chronic and recurrent long-term exposure

Amosite
Crocidolite
Silica
Fibrotic Pulmonary disease
Malignant Mesothelioma
Lung cancer

MT-2 Cells May Have Originated from Treg Cells

was established from normal human cord leukocytes of a male infant by co-culturing with leukemic T-cells from a female patient with adult T-cell leukemia.

Miyoshi, I. et al., Gann, 72, 978-981 (1981)

is human T cell leukemia virus type 1 (HTLV-1)-infected and immortalized CD4+ T cell line.

expresses CD25 and Foxp3 at high level and is harbored the Treg-cell-like suppressive function.

Chen, S. et al., International Immunology, 18, 269-277 (2005)

Establishment of an Asbestos-induced Apoptosis-Resistant Sublines (MT-2Rsts)

Asbestos (Chrysotile-A or Chrysotile-B)
Low-dose (10 μg/ml)
Long-term (more than 8 month)

MT-2 original cells (MT-2org)

MT-2Rsts; C1, C2, C3, B1, B2, B3

Suppressive Activity of MT-2 Cells on the Cell Division of TCR-stimulated Naive CD4+CD25- T Cell

Responder T cells (Tresp)
CD4+CD25- T cells (1 x 10^6)

MT-2Rst; C1, C2, C3

Tresp alone

Tresp:MT2 ratio

C1
43% 83% 96% 95%

C2
47% 88% 96% 95%

C3
52% 90% 96% 95%

MT-2

MT-2

Tresp:MT2

Ratio Tresp/MT2

1:1/16
1:1/64
1:1/256
1:1/1024

CFSE assay
Western Blotting

Cell Contact-dependent Suppressive Function by MT-2 Cells

- plate-coated anti-CD3 mAb (1 μg/mL)
- irradiated autologous monocyte-derived dendritic cells (DCs, 1 x 10^6)

Expression of FoxP3 in MT-2 Cells

Summary

Inhibition by soluble factors

- Chronic exposure to asbestos may enhance suppressive activity of regulatory T cells and lead to decrease in anti-tumor immunity.
Acknowledgements

Department of Hygiene
Kawasaki Medical School

Present Staff
Prof. Yasumitsu Nishimura
Dr. Noriko Komagata-Takai
Dr. Hidehito Matsumoto
Dr. Suni Lee
Ms. Tamaryo Hatakeyama
Ms. Shoko Yamamoto

Former Staff
Prof. Ayako Ueki
Prof. Hidenori Hiyoshi
Dr. Megumi Maeda
Dr. Hiroaki Hayashi
Dr. Yoshie Miura
Dr. Shoko Murakami
Dr. Akiko Takada-Tomokura
Dr. Ying Chen
Dr. Ping Liu
Ms. Naomi Miyahara
Ms. Mieko Katoh
Ms. Haruko Sakaguchi

"Comprehensive approach on asbestos-related diseases" supported by the "Special Coordination funds for Promoting Science and Technology (H18-1-3-3-1)" 2006 to 2010 in Japan

Chief: Prof. Takemi Otsuki
Associate Chief: Prof. Takashi Nakano; Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine
Member Researchers:

Prof. Seiki Hasegawa; Department of Thoracic Surgery, Hyogo College of Medicine
Prof. Morihito Okada; Department of Surgical Oncology, Research Institution for Radiation Biology and Medicine, Hiroshima University
Prof. Tohru Tsujimura; Department of Pathology, Hyogo College of Medicine
Dr. Yoshitaka Sekido; Division of Molecular Oncology, Aichi Cancer Center Research Institute
Prof. Shinya Toyokuni; Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University
Mrs. Kazuyo Motokawa, Department of Respiratory Surgery, Okayama University School of Medicine
Dr. Shinichi Toyooka; Division of Molecular Oncology, Aichi Cancer Center Research Institute
Prof. Kazuya Fukuoka; Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine
Prof. Fumihiro Tanaka; Department of Surgery (II), University of Occupational and Environmental Health

Dr. Masayasu Kusaka
Hinase Urakami Clinic (Bizen, Okayama, Japan)
Dr. Kozo Urakami
Department of Respiratory Surgery
Okayama University School of Medicine
Dr. Yuho Maki
Okayama Rosai Hospital
Dr. Takumi Kishimoto
Dr. Rika Tabata
Ms. Yoko Kojima