Immunotoxicology of Asbestos: Continuous exposure to asbestos to human T cell caused reduction of CXCR3, a chemokine receptor

Maeda M1,2, Otsuki T1, Kumagai N1, Matsuzaki H1, Lee S1, Hayashi H1,2, T Kishimoto4, Nishimura N1

1Department of Hygiene, Kawasaki Medical School, Kurashiki, Japan
2Department of Biofunctional Chemistry, Division of Bioscience, Okayama University Graduate School of Natural Science and Technology, Okayama, Japan
3Department of dermatology, Kawasaki Medical School, Kurashiki, Japan
4Okayama Rosai Hospital, Okayama, Japan

Immunological Effects of Asbestos and Silica

Asbestos (Silicate)

Silica

Crocidolite

Amosite

chrysotile

chronic and recurrent long-term exposure

Reduction of anti-tumor immunity

Fibrotic Pulmonary disease

Autantibodies

Silicosis

Reduction of the function

Activation of autoimmunity

Malignant Mesothelioma

Lung cancer

Original MT-2 (MT-2Org) cells acquire resistance to chrysotile-induced apoptosis by long-term and low-level exposures to chrysotile.

Clustering analysis of 139 genes reveals differences between MT-2Org and MT-2Rsts cells. Expression is scaled so that green represents low expression, and red represents high expression.

IFNγ signaling canonical pathway analysis shows that the expression of IRF9 and ISGF3 is down-regulated in MT-2Rsts cells. Blue thermometers indicate down-regulation. Numbers indicate cell line names (2, CA1; 3, CA2; 4, CA3; 5, CB1; 6, CB2; 7, CB3).
Network analysis indicates that down-regulation of CXCR3 is regulated by IRF9. Blue circles indicate reduced genes. Green arrows and gray arrows indicate positive and unspecified effects, respectively.

Chronic exposure to chrysotile inhibits the expression of CXCR3 in MT-2Rts cells. (A) Representative FACS profiles of cell-surface CXCR3 expression on MT-20rg, CA1, and CB1.

Continuous exposure to chrysotile decreases Th1-type cytokine IFN-γ and chemokine CXCL10/IP10 production in MT-2Rts cells.

Chronic exposure to chrysotile reduces expression of CXCR3 in IL-2–cultured human CD4+ T cells. Peripheral CD4+ T cells from healthy donors were stimulated with anti-CD3/CD28 antibodies and maintained with IL-2–containing medium.

IFN-γ production in IL-2–cultured human CD4+ T cells from patients showing reduced CXCR3 expression by exposure to chrysotile. CD4+ T cells from three subjects were activated with anti-CD3/CD28 antibodies and cultured with IL-2–containing medium in the absence or presence of 10 μg/cm² CB for 30 days.

Peripheral CD4+ T cells in patients with pleural plaque (PP) or malignant mesothelioma (MM) show decreased CXCR3 expression.
Age of subjects does not affect CXCR3 expression in CD4+ T cells.

Peripheral CD4+ T cells in MMs show reduced IFN-γ mRNA expression.

Peripheral CD4+ T cells in patients with PP or MM show increased IL-6 production.

Modest inverse correlation between the population size of CD4+CXCR3+ T cells and plasma CXCL10 levels in MMs.

Acknowledgements

Department of Hygiene
Kawasaki Medical School
Present Staff
Prof. Yasumitsu Nishimura
Dr. Naoko Kumagai-Takei
Dr. Hidenori Matsuzaki
Ms. Shoko Yamamoto
Former Staff
Prof. Ayako Ueki
Prof. Hidenori Hyodoh
Dr. Megumi Maeda
Dr. Hiroaki Hayashi
Dr. Shuko Murakami
Ms. Naomi Miyahara
Ms. Minako Katoh
Dr. Ying Chen
Dr. Ping Wu
Ms. Naomi Miyahara
Ms. Mirako Kato
Ms. Haruko Sakaguchi

"Comprehensive approach on asbestos-related disease" supported by the "Special Coordination Funds for Promoting Science and Technology (H18-1-3-3-1)" 2006 to 2010 in Japan.

Chief: Prof. Takemi Otsuki
Associate Chief: Prof. Takashi Nakano; Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine
Member Researchers
Prof. Seiki Hasegawa; Department of Thoracic Surgery, Hyogo College of Medicine
Prof. Morihito Okada; Department of Surgical Oncology, Research Institution for Radiation Biology and Medicine, Hiroshima University
Prof. Tohru Tsujimura; Department of Pathology, Hyogo College of Medicine
Dr. Yoshitaka Sekido; Division of Molecular Oncology, Aichi Cancer Center Research Institute
Prof. Shinya Toyokuni; Department of Pathology and Biological Responses, Graduate School of Medicine, Nagoya University
Dr. Hiroshi Nishimoto; Statistics and Cancer Informative Division, Research Center for Cancer Prevention and Screening, National Cancer Center
Prof. Kazuya Fukuoka; Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine
Prof. Fumihiro Tanaka; Department of Surgery (II), University of Occupational and Environmental Health

Kusaka Hinase Urakami Clinic (Bizen, Okayama, Japan)
Dr. Masayasu Kusaka

Okayama Rosai Hospital
Dr. Takumi Kishimoto
Dr. Rika Tabata
Ms. Yoko Kojima