URINARY PROFILES OF MONOHYDROXYLATED METABOLITES OF POLYCYCLIC AROMATIC HYDROCARBONS IN DIFFERENT INDUSTRIAL ACTIVITIES

University Department of Occupational Health, Lille, France

Nadège Lepage , Ariane Leroyer, Mickael Howsam , Patrice Simon, Anne Maitre, Franck Broly, Jean-Paul Bonte , Michel Lhermite

30th International Congress on Occupational Health, Cancun, March 18-23, 2012

MOTIVATIONS AND OBJECTIVES

- PAHs ubiquitous in the environment
- Present in numerous workplaces
- Importance of characterization of exposure for prevention
- Biomonitoring is complementary to monitoring of ambient air.
- 1-OH-pyrene, is the metabolite the most used for routinely estimation of internal exposure to PAH.
- But Pyrene is not a carcinogen (underestimation of carcinogenic risk?),
- Other biomarkers have been proposed for biomonitoring

Aim of the study :

- To evaluate the current levels of exposure to PAHs in different industrial activities, using air sampling and simultaneous analysis of several PAHs monohydroxy metabolites in urines
- To compare the profiles of exposure
- To evaluate the influence of individual factors (smoking, genetic polymorphism) on metabolites levels

METHOD

- Cross sectional study
- Study population : 125 male workers
- o aged: 21-57, average: 41
- 45% of smokers
- Industrial sectors and Activities

0	Coke production	(n=45)
0	Aluminium production	(n=20)
0	Glass production	(n=15)
0	Landscape service activities (two stroke engine utilisation	n) (n=15)

o Metal machining industry (mineral oil exposure)

RESULTS

METHOD

Exposure assessment

External PAH exposure :

personal air sampling during the shift: 16 EPA-PAHs (vapours and particulate bound PAHs) collected on biphasic systeme (filters and XAD-2

Internal PAH exposure: Urinary spot samples collected at the end of shift (ES) and 16 hours later (ES+16).

Monohydoxymetabolites, analysed by LC-MS/MS and HPLC-Fluorescence detection : 2-,3-&1-,4-,9-hydroxyphenanthrenes (Σ -OH-phen), 1-hydroxypyrene (1-OH-pyr), 3-hydroxybenzo(a)pyrene (3-OH-B(a)P), 1-&2-hydroxynaphalenes (Σ -OH-naph), 2-hydroxyfluorene (2-OH-fluo), 3-hydroxyfluoranthene (3-OH-flua), 1-&2- hydroxyfluoranthene (3-OH-flua), 1-&2- hydroxybenzo(a)anthracenes (Σ -OH-B(a)A), 3-&6-hydroxychrysenes (Σ -OHchry)

Evaluation of individual factors

- Genetic polymorphism in the genes coding for enzymes involved in the metabolism of PAHs: GSTM1, GSTT1, CYP1A1, EPHX1A, EPHX1T
- Self administered questionnaire (individual protections, smoking habits, food ...)

EXTERNAL DOSE ASSESSMENT: AIRBORNE PERSONAL SAMPLING 34 % ■Σ particulate PAH ■ Σgaseous PAH

- The highest median airborne level of total PAH \Rightarrow coke production
- The proportion of particulate PAH depends on the sector of activity

EXTERNAL EXPOSURE ASSESSMENT: PROFILE OF 16 EPA-PAH IN DIFFERENT INDUSTRIAL ACTIVITIES Very different profiles of PAH • Gaseous PAH always majoritary: naphtalene, acenaphtene, fluorene

VARIATION FACTORS OF URINARY OH-PAH EXCRETION

Multivariate analysis: only factors with significant influence on metabolites excretion are presented (multiplicative factor)

	10HPyr	ЗОНВар	ΣNaph	2OHFluo	ΣOHPhen	3OHFlua
Smoking (previous 8 h)	X 6.23	X 2.17	X 17.00	X 7.94	X 2.52	X 8.81
Corresponding airborne PAH level	X 7.85	X 4.98	X 3.70	X 8.79	X 5.79	X 1.54
Grilled/smoked food (previous 12 h)			X 3.13			
Contact with oils			X 2.84		X 1.77	X 3.55
Cutaneous exposure		X 2.80				
Gaz exhaust exposure				X 8.79		
No gloves protection	X 4.97					
Intense Physical activity		X 2.44		X 3.64		

No significant impact of : genetic polymorphisme, use of protective mask

- Best correlations between :
- ullet 1-OHpvr. Σ OH-Phen and inhaled amount of PAH : with their corresponding PAH, and also Σ particulate PAH, Σ gazeous PAH, Σ PAH, toxic equivalents
- Between 3-OHBaP and atmospheric PAH and specially with particulate PAH
- Intermediate corrélation for 2-OH-Fluo and ΣNaph
- Bad corrélation for 3-OH-Flua

- For each metabolite, the best correlation is always observed with 1-OH Pyr
- Good correlations between 1-OH pyr , 3-OH BaP and OH-Phen
- Worst correlation between naphtols, 30H-Flua and the other metabolites

CONCLUSION

- Levels and Profiles of PAH and their metabolites are different in various industrial activities
- Metabolites with 2 and 3 cycles are more often detected (naphtols, OH-Phen, 10H-Pyr, 20H-Fluo, 30H-Flua)
- Influence of smoking even at occupational exposure level
 - For all metabolites and particularly naphtols
 - Best parameter is the number of cigarettes smoked during the 8
- Best time for urinary spot sampling: end of shift for all metabolites except for 3 OH BaP
- Metabolites best correlated together and to atmospheric concentrations ⇒ metabolites of Pyr, BaP, Phen

ACKNOWLEDGEMENTS

- The Occupational Physiciens and the participants of the different companies
- The Occupational and Environmental Toxicology Laboratory, GRENOBLE
- The National Institut of Reserch and Security, VANDOEUVRE, France
- The Universitary Center of Mesurements and Analyses ,Université of Lille 2, LILLE, France

For Grants from

- French Agency for Food, Environment and Occupational health and safety, ANSES, France
- Nord Pas de Calais Région , France

3