NATIONAL HEALTH

Evaluation of data and recommendation on measurement technique and sampling protocol for determining concentrations of engineered and incidental nanoparticles

Date: 22 March 2012, ICOH2012

THORS:: Gopolang Sekobe, Mary Gulumian, Xolani Masoka

Aim

- To generate and evaluate relevant data to establish appropriate assessment and control methods and identify and prioritize exposure levels;
- To suggest control measures in line with observed exposures scenarios;
- To develop a simple risk assessment tool/checklist to assist managers in the process of health hazard identification and risk prioritization

Aim

- To generate and evaluate relevant data to establish appropriate assessment and control methods and identify and prioritize exposure levels;
- To suggest control measures in line with observed exposures scenarios;
- To develop a simple risk assessment tool/checklist to assist managers in the process of health hazard identification and risk prioritization

Establish appropriate assessment and control methods

Introduction

Describes

- Participants (& invitation to interested parties)
- Material Selected For Studies
- Approaches & measurement Methods for exposure assessment in work environment.
- Planned research.
- Planned research.

Concerning of the

Participants

Main project participants

- Mintek, a South African State Owned Enterprise (SoE) synthesizes gold nano-particles
- Eskom, a South African SoE mainly operate coalpowered power stations
- CSIR, a South African SoE synthesizes various nanoparticles
- NIOH, a South African SoE conducting exposure assessment.
- Interested contributors are welcome to contact

Gopolang.Sekobe@nioh.nhls.ac.za Mary.Gulumian@nioh.nhls.ac.za

Material Selection

• To start with, the synthesis process of gold nano-particles is studied first

NATIONAL HEALTH

Test Material	Mean Core Dia.	Capping Agent	By whom	Catalytic activity	Production method
#1	14 nm	Citrate	Mintek	CO	Chemical reduction
# 2	40 nm	Citrate	Mintek	oxidation	

Au NPs: Major Commercial Uses

• Currently used for Lateral flow diagnostics and Catalysis; Expected to be also applied in Therapeutics (e.g., cancer) and Imaging

NATIONAL HEALTH

14 nm Au TEM image

• The TEM image of the representative 14nm gold nanoparticles is given

AU NPs' behaviour in solutions

• The sharp UV/Vis. absorption spectrum and TEM image clearly indicate that the 14 nm gold nanoparticles do not aggregate in solution

Physicochemical Properties Surface Charge

- LM 20 Zetasiser used.
- Measuring -34.8mV.
- This value is sufficient to keep the particles from interacting with each other and therefore maintain a stable particle size

LHOMADING

Exposure Characterisation in Research Lab

Walk-Through Survey

- For possible emission ID
- Determine frequency & duration of each operation
- Determine ventilation: General & local exhaust
- Determine containment breaches in process points

Sampling Strategy

- Background readings.
- Source specific area sampling
- Source specific personal sampling

P-TRAK Ultrafine Particle Counter 8525

	Particle Counter	. ,
Synthe	sis Areas	
Location A: Fume Hood (1)	44017	14649
Location: B: Bench (2)	38329	12588
Location: C: Fume Hood (3)	36224	12861
Location D: Bench (4)	31702	11349
Non-synt	hesis Areas	
Location E: Fume Hood (5)	40212	11478
Location F: Bench (6)	34321	10435
Location G: Bench (7)	27163	9066
Location H: Freezer (8)	31323	9427
Location I: Between Benches (9)	23445	8031
Location J: Between Bench and Far wall (10)	26842	7813
Location K: In corner of Lab next to "Binder"	23303	7414
Machine (11)		
Location L: Next to Balances (12)	27061	7534
Location M: Electrophoresis Area (13)	27037	6644
ocation N: Unused Fumehood (14)	27399	7431
Applicati	ions Areas	
Location O: Microwave (15)	31503	8247
Location P: Bio Imaging System Area (16)	29929	8342
Location Q: De-Ioniser Bench (17)	27595	7664
Location R: Entrance of Lab (18)	29998	5998
Location S: Electro Chemistry Room (19)	2575	537
Location T: Diagnostics Room (20)	2897	528
Location U: Tissue Culture Room (21)	3801	709
The inter-lea	ading corridor	
Location V: Corridor Outside Lab (22)	32290	8209

Background Particle Counts - Met One HHPC - 6 Airborne Background Particle Counts -TSK P TRAK, 8525

• These two instruments give the counts of the particles without their characterization.

Physicochemical properties (cont.)

• Chemical analysis

- ICP-MS

- Size and agglomeration stage
 - TEM
- Surface properties/Ligands
 - FT-IR
 - NMR
- Surface activity
- ESR

NATIONIAL HEALTH

Aim

- To generate and evaluate relevant data to establish appropriate assessment and control methods and identify and prioritize exposure levels;
- To suggest control measures in line with observed exposures scenarios;
- To develop a simple risk assessment tool/checklist to assist managers in the process of health hazard identification and risk prioritization

