DELTA-AMINOLEVULINIC ACID DEHYDRATASE (ALAD) POLYMORPHISM ON RENAL TOXICITY OF LEAD IN WORKERS WITH PREVIOUS LEAD OCCUPATIONAL EXPOSURE

<u>Ariane LEROYER</u>, Catherine NISSE, Bruno LELEU, André KLEIN, Betty DEHON, Franck BROLY Lille 2 University / Regional University Hospital Center, Lille, FRANCE

Cancun, ICOH 2012

Local context

- A foundry in the north of France, specialized in non-ferrous metal metallurgy
 - I pyrometallurgic smelter for lead
 - I pyrometallurgic smelter for lead and zinc
- The company ceased its activities in early 2003

Scientific context

 Major lead toxicity: neurological system, kidney, blood cells, cardiovascular system (blood pressure), probably carcinogene (2A IARC for inorganic lead compounds), ...

Renal toxicity

- impairment of proximal tubular function (reversible)
- chronic interstitial nephritis (irreversible)

Scientific context

- Lead has the specificy to decreases heme biosynthesis by inhibiting δ-aminolevulinic acid dehydratase (ALAD)
- ALAD polymorphism
 - Gene on chromosome 9q34 (Kelada et al. 2001)
 G to C transversion at position 177 of the coding region of ALAD creates a variant allele ALAD 2 / wild-type allele = ALAD 1 (Wetmur et al. 1991)
 - Frequency of ALAD 2 ≈ 10% in Caucasian populations (Kelada et al. 2001)
 - The ALAD enzyme is the principal lead-binding site in erythrocytes, and the ALAD 2 protein binds lead more tightly than does the ALAD 1 protein (Bergdahl et al. 1997)
 - This change alters the toxicokinetics of lead and may modify risk associated with lead exposure (Kelada et al. 2001)

Scientific context

- ALAD polymorphism and renal effects: 2 reviews at the early 2000
 - Onalaja et al. (2000): remain cautious...
 - publications suggesting ALAD-2 allele to be linked to an increase of renal effects of lead
 - publications suggesting ALAD-2 allele to be linked to a decrease of renal effects of lead
 - Kelada et al. (2001): ALAD-2 is associated with elevated BLL and an increase of toxic effects of lead on kidney, but only at very high levels of BLL

Aims of the study

- To investigate the impact of G177C δ-aminolevulinic acid dehydratase (ALAD) polymorphism (rs1800435) on the renal toxicity of lead
- To explore potential gene environment interactions

Population

- Cross-sectional survey conducted 2008-2009
- Population of interest: cohort of ex-workers of the closed foundry
- Inclusion criteria
 - men
 - to sign the informed consent form
 - ⇒ 615 potential participants
- Invitation to participate by post

Data gathering

- Questionnaire to collect
 - Socio-demographic characteristics
 - Occupational history
 - Other sources of lead exposure (domestic/leisure) activities, smoking habits, food consumption, ...)
- Blood samples for determination of
 - Lead (BLL)
 - urea, creatinine
 - ALAD G177C polymorphism
- Urinary samples for determination of cadmium,
 - retinol-binding-protein (RBP),
 - N-acetyl-glucosaminidase (NAG) and its isoenzymes A and B

Statistical analysis

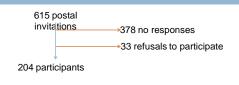
Exploration of renal function:

- 4 markers of renal function
- urea
- serum creatinine
- creatinine clearance (formula of Cockcroft et Gault) clearance = [(140 - age) x weigth x S] / (7.2 x serum creatinine)

(S=1.04 for men / S=0.85 for women)

- estimated glomerular filtration rate (based on CKD-EPI equation of the « Chronic Kidney Disease Epidemiology Collaboration) », Levey et al. 2009 using age, sex and serum creatinine)
- 4 markers of proximal tubular dysfunction
 - RBP
 - NAG-A

Statistical analysis


- Lead exposure
 - Duration of occupational lead exposure (years)
 - BLL at the time of the study participation (2008-2009)
 - CBLI = Cumulated Blood Lead level Index* (in 2008-2009)
 - calculated with all the blood lead determinations realized between the 1^{rst} occupational lead exposure and the study participation
 - formula:
 - **CBLI** = \int BLL. dt = Σ 0,5 (BLL_i + BLL_{i+1}). Δ t

* Fleming et al. (1927) and BLL_{i+1} = BLL respectively at the time i and (i+1)

Statistical analysis

- Exclusion of too diluted or too concentrated urines (urinary creatinine <0.3 or >3.0 g/L)
- Multiple linear regression models with interaction term were used, using the logarithm of each renal markers
 - Covariates : age, urinary Cd, duration since end of occupational lead exposure, smoking habits and medications which interfere with renal function + urinary creatinine for urinary markers
 - 3 models for each of the 8 renal biomarkers. function of the choice of lead exposure evaluation

Results: the studied population

- 32 to 66 years old at the time of inclusion (med=53)
- 68% 50 years old or more
- 57% manual workers
- 82% worked 20 years or more in the foundry

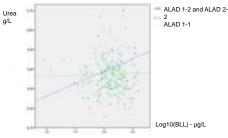
Lead exposure

- Cumulated duration of lead exposure: from 4 to 44 years (median 26 years)
- BLL at the time of the study: from 9 to 397 µg/L (med=137)
- CBLI: from 516 to 29736 µg/L x years (median 11809) (equiv. to 500 µg/L during 20 years)

ALAD polymorphism

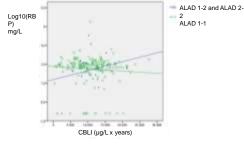
- □ The frequency of ALAD-2 allele was 9.3%.
 - 34 subjects were heterozygotes (ALAD1-2) and 2 homozygotes (ALAD 2-2)
 - Comparisons: ALAD 1-1 vs ALAD 1-2 or ALAD2-2.

Renal functioning

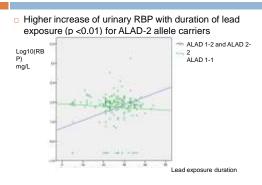

Most of the ex-workers have normal or slightly abnormal renal parameters:

11 (5%) have an elevated urea (>0.50 g/L)

 3 (1,4%) an elevated serum creatinine (>14,0 mg/L) 						
	Ν	Min	P25	P50	P75	Max
Urea (g/L)	204	0.1	0.31	0.35	0.41	0.7
Serum creatinine (mg/L)	204	4.9	7	8	9.8	17.1
Clearance (mL/min)	204	47.3	102	128.3	157.5	327.1
eGRF (mL/min/1,73 m ²)	204	42.6	86.8	101.6	110.1	133.7
NAG-A (UI/L)	187	1	2	2	3	11
NAG-B (UI/L)	187	2	7	11	16	61
Total-NAG (UI/L)	187	3	9	13	19,1	66
DDD / #1				~~		17000


Renal toxicity

 Higher increase of blood urea with BLL at the date of the study (p = 0.06) for ALAD-2 allele carriers



Renal toxicity

 Higher increase of urinary RBP with CBLI (p = 0.06) for ALAD-2 allele carriers

Renal toxicity

Strengths and limits of the study

Strengths

- Long time of lead exposure (20 y. or more for 82%)
- High levels of lead exposure
- Large variability of lead exposure (to study dose-effect responses)
- Past lead exposure: permit to distinguish reversible and irreversible renal effects (only constituted damages here)
- Use of 4 markers of renal function / 4 of proximal tubular dysfunction

Limits

- Despite age and exposure, few observed renal damages (HWE)
- Lack of statistical power (only 204 participants)

Conclusion

- These results are broadly consistent with those of the literature and reinforce the idea that the nephrotoxicity of lead may be influenced by ALAD polymorphisms
- Mechanism of ALAD polymorphism on renal effects remains unclear
- Other polymorphisms seem to modulate renal effects (VDR, eNOS, ...) and explorations have to continue

Thank you for your attention!

- Thanks to
 - All participants
 - Study supported by:
 - ANSES
 - North Pas-de-Calais Region

