

Acknowledgements Andrew FontenotLisa Maier • NIEHS Peggy MrozRichard Sawyer NHLBI • . NIAID John Martyny CDC/NIOSH • Mike Van Dyke Paul Kelleher US Department of Energy US Environmental Protection • Sally Tinkle Agency United Steelworkers of Yoshikazu Inou Priscilla Campbell America Patients participating in our Kay KreissElizabeth Fireman research

Outline

- 1. Sources of exposure to beryllium
- 2. Extent of global problem
- 3. Exposure levels
- 4. Beryllium health effects Medical surveillance results
- 5. Implications, needs

Index Case of Chronic Beryllium Disease in US Nuclear Weapons Industry 1985

"cause unknown"... ...Nuclear Weapons Machinist First of > 600 Cases

• Countries

At Risk Industries

- Defense industriesAerospace, Airline
- Industry
- Alloy manufacture
- Alloy machine shops
- Automotive
- Electronics, Telecommunications
- Computer
- Mining and manufacture of beryllium
- Dental
- Foundries
- Recycling
- (Infante and Newman Lancet 2004)

I	IA 1	1		D	or		dio	<u>, п</u>		h	0							0
	н	IA		1			un		la	U							VIIA	He
	3 Li	4 Be		0	ft	he	E	le	m	en	ts		5 8	6 C	7 N	8 0	9 F	10 Ne
	11 Na	12 Mg	IIIB	IVB		VIB	VIB		YII -				13 Al	14 Si	15 P	16 S	17 CI	18 Ar
	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
~	B7 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 Hs	109 Mt	110 110	111 111	112 112	113 113			100.000		100000
	ntho	nide	58	59	60	61	62	63	64	65	66	67	68	69	70	17710500		
	ries	mde	Če	Pr	Nd	Pm	Sm	Eu	Gd	ть	Dy	Ho	Ēr	Tm	Yb	Lu		
	tinid ries	θ	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 NO	103 Lr		

Beryllium Machining Risks

Countries with Published Cases

- North America: U.S. and Canada
- Europe: Britain, France, Germany, Belgium, Sweden (others?)
- Middle East: Israel
- Asia: Kazakhstan, Russia, India, Japan, South Korea
- Others where disease is likely occurring but not yet recognized: China, Australia, NZ, Americas
- 3,800 of 7,000 direct customers of the primary beryllium industry are *outside* the U.S.

(Lancet 2004; 363:415; J Occup Environ Hyg 2004; 1:648)

Recycling, Quebec, CA

47 sensitized, 2.2%
30 Chronic beryllium disease

Health Consequences for Ust-Kamenogorsk ULBA Beryllium Plant (1951-1995)

- Acute berylliosis 252
 34% toxic bronchitis
 6% CBD
- 6% CBD
- Rate 3.2% over all; 76% in high exposure jobs
- Dermatitis
- Conjunctivitis 455
- Lung cancer in 60% of CBD or bronchitis cases

602

- Mortality 157
- life expectancy after CBD diagnosis: 9.2 y

- Childrens' hair, breast milk, urine, liver, hilar nodes, lungs, bones, elevated Beryllium levels
- No known clinical evaluations of general population

Recent Studies of Community Exposure and Health Risk

- 1940s now Family cases – (Am Rev Respir Dis 1992; 145:1212)
- 1990s: continued "carry-out" exposures occurring (Am J Industr Med 1999; 1:72)
- Reading, PA, "revisited"
 - "Community acquired CBD"
 - Residents living in vicinity of beryllium production
 - facility (Am J Respir Crit Care Med 2008)

LWE*	CBD	Exposed	Percent
(µg/m3)	Cases	Controls	CBD
0.50-1.00	2	37	5.4%
0.20-0.50	10	72	13.9%
0.10-0.20	4	29	13.8%
0.02-0.10	4	46	8.7%
<0.02	0	22	0%⇐
otal	20	206	

Overview of CBD and Exposure Field Studies

- CBD risk is associated with:
 - Job Task Job Title
 - Job Thie
- CBD also seen among people with low exposures
- Due to genetic risk (HLA DPB1 E69)
- OSHA 2.0 ug/m³ Permissible Exposure Limit not protective
- Materion Brush and United Steelworkers recommending a 10 fold reduction in Permissible Exposure Limit (0.2 ug/m³)

- Immunoassay
- Measures T lymphocyte proliferation when exposed to beryllium salts
- Detects sensitized to beryllium, but cannot separate sensitization from chronic beryllium disease (CBD)

Gene x Environment

- Van Dyke et al. Risk of Chronic beryllium disease by HLA-DPB1 E69 Genotype and Beryllium Exposure in Nuclear Workers Am J Respir Crit Care Med (2011)
- Van Dyke et al. Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry. Occ Environ Med (2011)

Exposure Reconstruction

 CBD higher *lifetime weighted average* exposure (µg/m³)

	Total	Control	BeS	CBD
n	386	255	70	61
Cumulative Be Exposure (Median)	0.03	0.03	0.01	0.07
(Mean)	0.24	0.15	0.25	0.64

Lifetime Weighted Average Exposure Quartiles

Exposure Quartile (µg/m ³)	BeS	CBD
<0.001	24 (34.3%)	10 (16.4%)
>0.001 to <0.03	21 (30.0%)	14 (22.9%)
>0.03 to <0.17	10 (14.3%)	12 (19.7%)
>0.17	15 (24.4%)	25 (41.0%)

Conclusions Van Dyke Papers

- Exposure response seen for CBD
- No exposure response for BeS (low exposures produce the allergy)
- Risk associated with E69, as in prior research
- No significant gene x environment interaction
- Emphasis on exposure reduction to serve public health

Summary and Conclusions

- We continue to expose workers to beryllium at levels that cause chronic, incurable lung disease in 2-15%.
- Beryllium triggers over-reaction by the immune system leading to 'sensitization' and granuloma formation
- Beryllium exposure and genetics contribute to disease risk...but the key is to *control exposure*

Conclusions

- There is an international epidemic of beryllium-related disease
- Multiple factors contribute to the underrecognition of the beryllium epidemic
- Where beryllium goes, disease follows
- A systematic, multifaceted, public health response is required to reduce the risk

Directions for Prevention

- Medical monitoring for early detection needed in more countries
- Reduction of exposure for all workers
 - Limit beryllium use to essential use only
 - Lower the permissible exposure limit
 - Multi-prong approach to exposure reduction
- Education of downstream users, workforce